Skip to main content
Log in

The Role of Renin–Angiotensin–Aldosterone System and Its New Components in Arterial Stiffness and Vascular Aging

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Many cardiovascular diseases present renin–angiotensin–aldosterone system (RAAS) hyperactivity as an important pathophysiological mechanism to be target in the therapeutic approaches. Moreover, arterial stiffness is currently considered as a new independent risk factor for cardiovascular disease in different clinical conditions, including hypertension and chronic kidney disease. In fact, excessive stimulation of angiotensin type 1 (AT1) receptors, as well as mineralocorticoid receptors, results in cellular growth, oxidative stress and vascular inflammation, which may lead to arterial stiffness and accelerate the process of vascular aging. In the last decades, a vasoprotective axis of the RAAS has been discovered, and now it is well established that new components with antioxidant and anti-inflammatory properties play important roles promoting vasodilation, natriuresis and reducing collagen deposition, thus attenuating arterial stiffness and improving endothelial function. In this review, we will focus on these pathophysiological mechanisms and the relevance of RAAS inhibition by different strategies to increase arterial compliance and to decelerate vascular aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhuo JL, Ferrao FM, Zheng Y, Li XC. New frontiers in the intrarenal Renin-Angiotensin system: a critical review of classical and new paradigms. Front Endocrinol (Lausanne). 2013;4:1–14.

    Google Scholar 

  2. Te Riet L, Van Esch JHM, Roks AJM, Van Den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116:960–75.

    Article  CAS  Google Scholar 

  3. Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116:1074–95.

    Article  PubMed  CAS  Google Scholar 

  4. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107:2864–9.

    Article  PubMed  Google Scholar 

  5. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  PubMed  CAS  Google Scholar 

  6. Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6.

    Article  PubMed  Google Scholar 

  7. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  PubMed  Google Scholar 

  8. Davies JI, Struthers AD. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens. 2003;21:463–72.

    Article  PubMed  CAS  Google Scholar 

  9. Ong KT, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, Boutouyrie PI. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29:1034–42.

    Article  PubMed  CAS  Google Scholar 

  10. Strazzullo P. Reducing sodium and increasing potassium intake. BMJ. 2013;346:f2195.

    Article  PubMed  Google Scholar 

  11. Strazzullo P, D’Elia L, Kandala N-B, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334:885–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Edwards DG, Farquhar WB. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015;24:8–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. D’Elia L, Galletti F, La Fata E, Sabino P, Strazzullo P. Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials. J Hypertens. 2017;35:1–10.

    Article  CAS  Google Scholar 

  16. Todd AS, Macginley RJ, Schollum JB, Johnson RJ, Williams SM, Sutherland WH, et al. Dietary salt loading impairs arterial vascular reactivity. Am J Clin Nutr. 2010;91:557–64.

    Article  PubMed  CAS  Google Scholar 

  17. Frohlich ED. The salt conundrum: a hypothesis. Hypertension. 2007;50:161–6.

    Article  PubMed  CAS  Google Scholar 

  18. Matavelli LC, Zhou X, Varagic J, Susic DFE. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats. Am J Physiol Hear Circ Physiol. 2007;292:H814–9.

    Article  CAS  Google Scholar 

  19. Leenen FH, Ruzicka M, Huang BS. The brain and salt-sensitive hypertension. Curr Hypertens Rep. 2002;4:129–35.

    Article  PubMed  Google Scholar 

  20. Schmidlin O, Forman A, Sebastian AMRJ. Sodium-selective salt sensitivity: its occurrence in blacks. Hypertension. 2007;50:1085–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Osborn JWFG. Region specific changes in sympathetic nerve activity in AngII-salt hypertension. Exp Physiol. 2010;95:61–8.

    Article  PubMed  CAS  Google Scholar 

  22. Stocker SD, Madden CJSA. Excess dietary salt intake alters the excitability of central sympathetic networks. Physiol Behav. 2010;100:519–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  PubMed  CAS  Google Scholar 

  24. Mäki-Petäjä KM, Wilkinson IB. Inflammation and large arteries: potential mechanisms for inflammation-induced arterial stiffness. Artery Res. 2012;6:59–64.

    Article  Google Scholar 

  25. Ayhan H, Kasapkara HA, Aslan AN, Durmaz T, Keleş T, Akçay M, et al. Relationship of neutrophil-to-lymphocyte ratio with aortic stiffness in type 1 diabetes mellitus. Can J Diabetes. 2015;39:317–21.

    Article  PubMed  Google Scholar 

  26. Avolio A, Butlin M, Liu YY, Viegas K, Avadhanam B, Lindesay G. Regulation of arterial stiffness: cellular, molecular and neurogenic mechanisms. Artery Res. 2011;5:122–7.

    Article  Google Scholar 

  27. McEniery CM, Qasem A, Schmitt M, Avolio AP, Cockcroft JR, Wilkinson IB. Endothelin-1 regulates arterial pulse wave velocity in vivo. J Am Coll Cardiol. 2003;42:1975–81.

    Article  PubMed  CAS  Google Scholar 

  28. Lacolley P, Challande P, Regnault V, Lakattac EG, Wang M. Cellular and molecular determinants of arterial aging. In: Nilsson P, Olsen M, Laurent S, editors. Early Vascular Aging. Elsevier, Academic Press; 2015. p. 7–13.

  29. Wang M, Jiang L, Monticone RE, Lakatta EG. Proinflammation: the key to arterial aging. Trends Endocrinol Metab. 2014;25:72–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kubler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999;19:1623–9.

    Article  PubMed  CAS  Google Scholar 

  31. Hahn AW, Jonas U, Buhler FR, Resink TJ. Activation of human peripheral monocytes by angiotensin II. FEBS Lett. 1994;347:178–80.

    Article  PubMed  CAS  Google Scholar 

  32. Ferrario CM, Strawn WB. Role of the renin-angiotensin aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol. 2006;98:121–8.

    Article  PubMed  CAS  Google Scholar 

  33. Martinez FA. Aldosterone inhibition and cardiovascular protection: more important than it once appeared. Cardiovasc Drugs Ther. 2010;24:345–50.

    Article  PubMed  CAS  Google Scholar 

  34. Cascella T, Radhakrishnan Y, Maile LA, Walker H, Busby J, Gollahon K, et al. Aldosterone enhances IGF-I-mediated signaling and biological function in vascular smooth muscle cells. Endocrinology. 2010;151:5851–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nam SH, Kang SG, Song SW. The neutrophil-lymphocyte ratio is associated with coronary artery calcification in asymptomatic Korean males: a crosssectional study. Biomed Res Int. 2017;2017:1989417.

    PubMed  PubMed Central  Google Scholar 

  36. Balta S, Kurtoglu E, Kucuk U, Demirkol S, Öztürk C. Neutrophil-lymphocyte ratio as an important assessment tool. Expert Rev Cardiovasc Ther. 2014;12:537–8.

    Article  PubMed  CAS  Google Scholar 

  37. Karaman M, Balta S, Seyit Ahmet AY, Cakar M, Naharci I, Demirkol S, et al. The comparative effects of valsartan and amlodipine on vWf levels and N/L ratio in patients with newly diagnosed hypertension. Clin Exp Hypertens. 2013;35:516–22.

    Article  PubMed  CAS  Google Scholar 

  38. Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol. 2005;45:1638–43.

    Article  PubMed  Google Scholar 

  39. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The renin–angiotensin–aldosterone system in vascular inflammation and remodeling. Int J Inflam. 2014;2014:689360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing—implications in hypertension. J Mol Cell Cardiol. 2015;83:112–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70:660–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mikhed Y, Daiber A, Steven S. Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci. 2015;16:15918–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (±) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA Natl Acad Sci. 2001;98:2278–83.

    Article  CAS  Google Scholar 

  44. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ. NADPH oxidases in vascular pathology. Antioxid Redox Signal. 2014;20:2794–814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. AJP Hear Circ Physiol. 2011;301:H363–72.

    Article  CAS  Google Scholar 

  46. Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164:213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016;30:1987–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Leong X-F, Mustafa MR, Das S, Jaarin K. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil. Lipids Health Dis. 2010;9:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yung L-M, Sánchez-Duffhues G, ten Dijke P, Yu PB. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc Res. 2015;108:278–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brown KA, Didion SP, Andresen JJ, Faraci FM. Effect of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol Am Heart Assoc. 2007;27:1941–6.

    Article  CAS  Google Scholar 

  51. Ferrario CM. Addressing the theoretical and clinical advantages of combination therapy with inhibitors of the renin-angiotensin-aldosterone system: antihypertensive effects and benefits beyond BP control. Life Sci. 2010;86:289–99.

    Article  PubMed  CAS  Google Scholar 

  52. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  PubMed  CAS  Google Scholar 

  53. Rhaleb NE, Yang XP, Carretero OA. The Kallikrein-Kinin system as a regulator of cardiovascular and renal function. Compr Physiol. 2011;1:971–93.

    PubMed  PubMed Central  Google Scholar 

  54. Linz W, Wiemer G, Gohlke P, Unger T, Scholkens B. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev. 1995;47:25–49.

    PubMed  CAS  Google Scholar 

  55. Düsing R. Mega clinical trials which have shaped the RAS intervention clinical practice. Ther Adv Cardiovasc Dis. 2016;10:133–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wong MCS, Chan DKL, Wang HHX, Tam WWS, Cheung CSK, Yan BP, et al. The incidence of all-cause, cardiovascular and respiratory disease admission among 20,252 users of lisinopril vs. perindopril: a cohort study. Int J Cardiol. 2016;219:410–6.

    Article  PubMed  Google Scholar 

  57. Shahin Y, Khan JA, Chetter I. Angiotensin converting enzyme inhibitors effect on arterial stiffness and wave reflections: a meta-analysis and meta-regression of randomised controlled trials. Atherosclerosis. 2012;221:18–33.

    Article  PubMed  CAS  Google Scholar 

  58. Van Vark LC, Bertrand M, Akkerhuis KM, Brugts JJ, Fox K, Mourad JJ, et al. Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158 998 patients. Eur Heart J. 2012;33:2088–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation. 1999;100:2267–75.

    Article  PubMed  CAS  Google Scholar 

  60. Wojakowski W, Gminski J, Siemianowicz K, Goss M, Machalski M. The influence of angiotensin-converting enzyme inhibitors on the aorta elastin metabolism in diet-induced hypercholesterolaemia in rabbits. J Renin Angiotensin Aldosterone Syst. 2001;2:37–42.

    Article  PubMed  CAS  Google Scholar 

  61. Carey RM. Update on angiotensin AT2 receptors. Curr Opin Nephrol Hypertens. 2017;26:91–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Carey RM. AT2 receptors: potential therapeutic targets for hypertension. Am J Hypertens. 2017;30:339–47.

    PubMed  Google Scholar 

  63. Lévy BI. Can angiotensin II Type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin-angiotensin system. Circulation. 2004;109:8–13.

    Article  PubMed  Google Scholar 

  64. Ichihara S, Senbonmatsu T, Price E, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation. 2001;104:346–51.

    Article  PubMed  CAS  Google Scholar 

  65. Senbonmatsu T, Ichihara S, Price E, Gaffney FA, Inagami T. Evidence for angiotensin II type 2 receptor–mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest. 2000;106:R25–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Briet M, Schiffrin EL. Vascular actions of aldosterone. J Vasc Res. 2013;50:89–99.

    Article  PubMed  CAS  Google Scholar 

  67. Briet M, Barhoumi T, Mian MOR, Coelho SC, Ouerd S, Rautureau Y, et al. Aldosterone-induced vascular remodeling and endothelial dysfunction require functional angiotensin type 1a receptors novelty and significance. Hypertension. 2016;67:897–905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Druppel V, Kusche-Vihrog K, Grossmann C, Gekle M, Kasprzak B, Brand E, et al. Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J. 2013;27:3652–9.

    Article  PubMed  CAS  Google Scholar 

  69. Silva MAB, Cau SBA, Lopes RAM, Manzato CP, Neves KB, Bruder-Nascimento T, et al. Mineralocorticoid receptor blockade prevents vascular remodelling in a rodent model of type 2 diabetes mellitus. Clin Sci. 2015;129:533–45.

    Article  PubMed  CAS  Google Scholar 

  70. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51:432–9.

    Article  PubMed  CAS  Google Scholar 

  71. Mahmud A, Feely J. Aldosterone-to-renin ratio, arterial stiffness, and the response to aldosterone antagonism in essential hypertension. Am J Hypertens. 2005;18:50–5.

    Article  PubMed  CAS  Google Scholar 

  72. White WB, Duprez D, St Hillaire R, Krause S, Roniker B, Kuse-Hamilton J, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension. 2003;41:1021–6.

    Article  PubMed  CAS  Google Scholar 

  73. Hwang M-H, Yoo J-K, Luttrell M, Kim H-K, Meade TH, English M, et al. Role of mineralocorticoid receptors in arterial stiffness in human aging. Exp Gerontol. 2013;48:701–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nobakht N, Kamgar M, Rastogi A, Schrier RW. Limitations of angiotensin inhibition. Nat Rev Nephrol. 2011;7:356–9.

    Article  PubMed  CAS  Google Scholar 

  75. O’Brien E, Barton J, Nussberger J, Mulcahy D, Jensen C, Dicker P, et al. Aliskiren reduces blood pressure and suppresses plasma renin activity in combination with a thiazide diuretic, an angiotensin-converting enzyme inhibitor, or an angiotensin receptor blocker. Hypertension. 2007;49:276–84.

    Article  PubMed  CAS  Google Scholar 

  76. Virdis A, Ghiadoni L, Qasem AA, Lorenzini G, Duranti E, Cartoni G, et al. Effect of aliskiren treatment on endothelium-dependent vasodilation and aortic stiffness in essential hypertensive patients. Eur Heart J. 2012;33:1530–8.

    Article  PubMed  CAS  Google Scholar 

  77. McMurray JJV, Krum H, Abraham WT, Dickstein K, Køber LV, Desai AS, et al. Aliskiren, Enalapril, or Aliskiren and enalapril in heart failure. N Engl J Med. 2016;374:1521–32.

    Article  PubMed  CAS  Google Scholar 

  78. Solinski HJ, Gudermann T, Breit A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol Rev. 2014;66:570–97.

    Article  PubMed  CAS  Google Scholar 

  79. Santos RAS, e Silva ACS, Maric C, Silva DMR, Machado RP, de Buhr L, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci. 2003;100:8258–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7): an evolving story in cardiovascular regulation. Hypertension. 2006;47:515–21.

    Article  PubMed  CAS  Google Scholar 

  81. Chappell MC. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS receptor axis: more than regulation of blood pressure? Hypertension. 2007;50:596–9.

    Article  PubMed  CAS  Google Scholar 

  82. Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res. 2006;98:463–71.

    Article  PubMed  CAS  Google Scholar 

  83. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38.

    Article  PubMed  CAS  Google Scholar 

  84. Passos-Silva DG, Brandan E, Santos RAS. Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol Sci. 2015;36:310–20.

    Article  PubMed  CAS  Google Scholar 

  85. Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Hear Circ Physiol. 2016;310:H137–52.

    Article  Google Scholar 

  86. Kaschina E, Namsolleck P, Unger T. AT2 receptors in cardiovascular and renal diseases. Pharmacol Res. 2017;125:39–47.

    Article  PubMed  CAS  Google Scholar 

  87. Li XC, Campbell DJ, Ohishi M, Yuan S, Zhuo JL. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Ren Physiol. 2006;290:F1024–33.

    Article  CAS  Google Scholar 

  88. Kemp BA, Howell NL, Gildea JJ, Keller SR, Padia SH, Carey RM. AT2 receptor activation induces natriuresis and lowers blood pressure. Circ Res. 2014;115:388–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Fritsch Neves.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human participants and/or animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article is a Review and informed consent is not applicable.

Additional information

This article is part of the topical collection on Vascular Aging and Arterial Stiffness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, M.F., Cunha, A.R., Cunha, M.R. et al. The Role of Renin–Angiotensin–Aldosterone System and Its New Components in Arterial Stiffness and Vascular Aging. High Blood Press Cardiovasc Prev 25, 137–145 (2018). https://doi.org/10.1007/s40292-018-0252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-018-0252-5

Keywords

Navigation